Jhargram Raj College

Problem Set - Fourier Series
Code: Sem_3_Assignment_1
Batch: Semester_3, 2021-22
-by S.S

Kronecker's Method of integration

$\int g(x) f(x) d x$
$=g(x) F_{1}(x)-g^{\prime}(x) F_{2}(x)+g^{\prime \prime}(x) F_{3}(x)+\cdots$
where,

$$
\begin{align*}
F_{1}(x) & =\int f(x) d x \tag{2}\\
F_{2}(x) & =\int F_{1}(x) d x \tag{3}\\
& \vdots \tag{4}\\
F_{n}(x) & =\int F_{n-1}(x) d x
\end{align*}
$$

1. Find the Fourier Cosine Series for the function

$$
f(x)= \begin{cases}1 & 0<x<\frac{\pi}{2} \\ 0 & \frac{\pi}{2}<x<\pi\end{cases}
$$

page-449 Find a
2. Consider the square wave as given below Square Wave

(a) Write the functional form of the square wave function.
(b) Find the 'Fourier Series' for this square wave function.
3. Expand $f(x)=\sin x, 0<x<\pi$, in a Fourier series and show that

$$
f(x)=\frac{2}{\pi}-\frac{4}{\pi}\left(\frac{\cos 2 x}{2^{2}-1}+\frac{\cos 4 x}{4^{2}-1}+\frac{\cos 6 x}{6^{2}-1}+\cdots\right)
$$

4. Expand $f(x)=x, 0<x<2$, in a half range series
(a) using sine series show that

$$
x=\frac{4}{\pi}\left(\sin \frac{\pi x}{2}-\frac{1}{2} \sin \frac{2 \pi x}{2}+\frac{1}{3} \sin \frac{3 \pi x}{2}-\cdots\right)
$$

(b) Using cosine series show that

$$
\begin{array}{r}
x=1-\frac{8}{\pi^{2}}\left(\cos \frac{\pi x}{2}+\frac{1}{3^{2}} \cos \frac{3 \pi x}{2}+\frac{1}{5^{2}} \cos \frac{5 \pi x}{2}\right. \\
+\cdots)
\end{array}
$$

5. (a) Using the cosine series of the last problem [4(b)], write down the Parseval's identity corresponding to the Fourier series.
(b) From above show that

$$
\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots+\frac{1}{n^{4}}+\cdots=\frac{\pi^{4}}{90}
$$

6. (a) Find a Fourier series for $f(x)=x^{2}, 0<$ $x<2$, by integrating the sine series of $f(x)=x, 0<x<2$.
(b) Now show that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

